Abstract

The reaction mechanism of bimetallic Pd-Zn-catalyzed cycloaddition of alkynyl aryl ethers with internal alkynes has been studied theoretically. Besides cycloaddition reaction, the dimerization of alkynyl aryl ethers was also considered. Both C6H5OC[triple bond, length as m-dash]CSiiPr3 and C6H5OC[triple bond, length as m-dash]CSiMe3 were chosen as the substrates. The reactions involve C-H activation of the substrate, acetic acid rotation, H transformation, MeC[triple bond, length as m-dash]CMe or substrate insertion into the Pd-phenyl bond and reductive elimination steps. It is found that cycloaddition is favored for C6H5OC[triple bond, length as m-dash]CSiiPr3, while dimerization is preferred for C6H5OC[triple bond, length as m-dash]CSiMe3, because the steric repulsion between two bulky SiiPr3 groups is relatively large and the steric repulsion between two small SiMe3 groups is relatively small. In addition, besides C6H5OC[triple bond, length as m-dash]CSiiPr3, four other substrates C6H5CH2C[triple bond, length as m-dash]CSiiPr3, C6H5C(O)C[triple bond, length as m-dash]CSiiPr3, C6H5SC[triple bond, length as m-dash]CSiiPr3 and C6H5N(H)C[triple bond, length as m-dash]CSiiPr3 have been calculated as the substrates for cycloaddition reaction with MeC[triple bond, length as m-dash]CMe. Among the five substrates, C6H5OC[triple bond, length as m-dash]CSiiPr3 has the lowest energy barrier (29.9 kcal mol-1), consistent with the experimental observation that C6H5OC[triple bond, length as m-dash]CSiiPr3 is the appropriate substrate for successful cycloaddition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call