Abstract

The DFT calculation at the B3LYP/B3LYP-D3(BJ) level was carried out to explore the reaction mechanism of the synthesis of spirocyclo[4,5]decane skeleton by gold-catalyzed allenyl compounds. The more accurate energy under the CH3CN solvent in the experiment is calculated by the single-point energy of the SMD model. Computational studies have shown that the reaction consists of three main steps: intramolecular cycloaddition of the end group carbon atoms of allenyl and vinyl groups, the semipinacol rearrangement process in which the four-membered ring is reconstructed into the five-membered ring, the elimination reaction releases the catalyst and obtains the product. The calculation results show that Zheng et al. reported that the gold-catalyzed synthesis reaction can easily occur under the experimental conditions due to its low activation free energy (12.07-15.49kcal/mol). Furthermore, it was found that the MOMO(CH2)2 substituent has higher reactivity than the corresponding reactant of the phenyl substituent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call