Abstract

The thermal Diels-Alder reaction between alkenylmetal(0) Fischer carbenes and 1,3-dienes (isoprene and cyclopentadiene) has been studied computationally within the density functional theory framework. The selectivity of the [4 + 2] cycloadditions between alkenyl-group 6 (Fischer) carbene complexes and isoprene is similar to the selectivity computed for the reactions involving Lewis acid complexed acrylates. The experimentally observed complete endo selectivity in the [4 + 2] cycloadditions of alkenyl-group 6 (Fischer) carbene complexes with cyclopentadiene, which takes place under kinetic control, may be due in part to the presence of stabilizing secondary orbital interactions. These interactions are stronger than the analogues in the metal-free processes. The [4 + 2] cycloadditions between alkenyl-group 6 (Fischer) carbene complexes and neutral dienes occur concertedly via transition structures which are more asynchronous and less aromatic than their non-organometallic analogues, a behavior which is extensible to the reactions between Lewis acid complexed acrylates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.