Abstract

From first principles calculations, we investigate the adsorption of a number of Sn structures (a single atom, a cluster, and an atomic wire) on the inner and outer surfaces of single-walled carbon nanotubes (CNTs); with an interest in the potential applications of these systems to Li-ion batteries. We find that Sn clusters have a much weaker interaction with the CNTs than single Sn atoms and that the interaction of Sn with the outer surface of the CNT is about 2−3 times greater than with the inner surface. The Sn atomic wire is stable inside zigzag (n, 0) CNTs, when n is greater than 10; moreover, we find that the adsorption energy reaches a maximum (−0.19 eV) at n = 14 or 15. Our simulation results explain well experimental observations and suggest that CNT-encapsulated Sn is a potential anode material for Li-ion batteries, with the ability to withstand the huge volume changes that occur upon Sn alloying with Li.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.