Abstract

Electrocatalytic reduction (ECR) of CO2 to chemical products is an important carbon emission reduction method. This work uses DFT to study the stability of N-doped graphene-supported four metal single-atom catalysts (M-N-C) and the effects of the coordination environment and metal centers on the selectivity of CO2 ECR to C1 products. The results show that Fe, Co, Ni, and Cu have good stability. The coordination environment has a significant modulating effect on product selectivity, and the change of the number of ligand nitrogen atoms will affect the size of the potential-limiting step of each product. When the number of nitrogen ligands is the same, the different metal centers of the M-N-C catalyst have a significant effect on the selectivity of different products. In addition, the introduction of nitrogen atom ligands can adjust the electronic structure of the graphene-supported metal center, increase the d-band center of most metals, and improve the reaction activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.