Abstract

ABSTRACTChemical fixation of CO2 with epoxides catalyzed by organic-base salts were found to be efficient among the various catalysts tested due to synergetic effects of HBDs and halide-ions for ring-opening. In this study, 1,4,6-Triaza–bicyclo[3.3.0]oct-4-enium bromide catalyzed conversion of CO2 and epoxide into cyclic-carbonate has been studied by using DFT method to understand the reaction mechanism and the catalytic performance of TBO.HBr. Two hypothetical reaction mechanisms were proposed for the coupling reaction. Thermodynamic and kinetic parameters were computed for each steps to determine the more favorable route. Mechanism II is more favorable path whereby Br- ion first interacts with epoxide to form bromo-alcohol, which directed to form carbonate-ion and finally ring-closure step yielded cyclic-carbonate with catalyst-regeneration. Cyclization step is rate-determining step with reaction barrier of 22.696 kcal/mol in gas phase. Ensuing the favorable mechanism, solvent-effects on the reaction barrier has been investigated using water and THF. Mechanism II is still more favorable reaction path in both THF and water. However, the rate-determining step is found to be ring-opening of the epoxide with reaction barrier of 22.658 kcal/mol (wate) and 21.969 kcal/mol (THF). In this study, TBO.HBr exhibited good catalytic activity for the title reaction investigated in both gas phase and solvents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call