Abstract
Recent experiments related to a study concerning the adsorption of water on graphene have demonstrated the p-doping of graphene, although most of the abinitio calculations predict nearly zero doping. To shed more light on this problem, we have carried out van der Waals density functional theory calculations of water on graphene for both individual water molecules and continuous water layers with coverage ranging from one to eight monolayers. Furthermore, we have paid attention to the influence of the water molecule orientation toward graphene on its doping properties. In this article, we present the results of the band structure and the Bader charge analysis, showing the p-doping of graphene can be synergistically enhanced by putting 4-8 layers of an ice-like water structure on graphene having the water molecules oriented with oxygen atoms toward graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.