Abstract
DFT studies are reported of a monomeric iron dialkyl for which oxygen atom insertion into metal-methyl bonds occurs with O2: FeMe2 + O2 → Fe(OMe)2. Computation of the reaction coordinate implicates the intermediacy of Fe(III)-peroxo, Fe(VI)-dioxo, and Fe(IV)-oxo intermediates, connected by O2 oxidative addition and two methyl migration steps. Analysis of the reaction of O2 with d(6)-Fe(Me)2 indicates that oxy-insertion for this iron complex occurs with lower free energy barriers than competing homolytic/radical pathways, exploiting "spin-flip" processes via minimum energy crossing points (MECPs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.