Abstract

The mechanisms of highly regioselective iron(II)-catalyzed synthesis of α-carboxylic acids from alkene derivatives and CO2 have been investigated using density functional theory (DFT) calculations at the B3LYP-D3 level. The results show that the overall catalytic cycle includes β-hydride elimination, hydrometalation, oxidative addition of EtMgBr, reductive elimination, and carboxylation using CO2. However, the first and second steps could be replaced by a favored concerted one-step mechanism without forming the iron hydride complex. The rate-limiting step for the whole catalytic cycle is the reductive elimination step, where the energy barrier ΔE is 37.3 kcal/mol in the gas phase and the Gibbs free energy in solvent THF ΔGsol is 30.3 kcal/mol, computed using the SMD method. The mechanisms to obtain the byproduct β-carboxylic acids are also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.