Abstract

A systematic study of the mechanism of phenylselenoetherification of a naturally occurring alcohol linalool with PhSe+ was performed at the B3LYP/6-311+G(d,p) level of theory, in conjunction with the CPCM solvation model. The syn and anti reaction pathways were examined in the absence and presence of some Lewis bases (quinoline, piperidine, pyridine, and triethylamine) as catalysts. It was found that the reaction occurs via the phenylseleniranium intermediate, which further suffers a nucleophilic attack of the oxygen to two olefinic carbon atoms. This intramolecular cyclization yields 5-ethenyl-5-methyl-2-[2-(phenylseleno)-prop-2-yl]tetrahydrofuran as the major product and 6-ethenyl-2,2,6-trimethyl-3-phenylselenotetrahydropyran as the minor product. Lewis bases facilitate the reaction by strong hydrogen bonds between the alcoholic hydrogen and nitrogen of an additive moiety, and they stabilize the product complexes. Since the formation of the tetrahydrofuran derivative requires higher activation energy, but is thermodynamically more stable than the tetrahydropyran, it was concluded that the phenylselenoetherification reaction of linalool is thermodynamically controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.