Abstract

The mechanism of the Cu(I)-catalyzed and uncatalyzed intramolecular cyclopropanation of ketoesteric and diesteric iodonium ylides has been thoroughly explored by means of electronic structure calculation methods (DFT). All crucial reaction steps encapsulated in the entire catalyzed and uncatalyzed reaction pathways were scrutinized, while the elementary steps, the intermediates and transition states were identified through monitoring the geometric and energetic reaction profiles. It was found that CuCl efficiently catalyze the cyclopropanation of iodonium ylides only for their diesteric derivatives and their diazo analogues via stabilization of the respective carbene upon complexation with the metal center. For the ketoesteric iodonium ylides the CuCl catalyst does not affect the kinetics of the intramolecular cyclopropanation reactions which could proceed easily without the catalyst, in line with available experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.