Abstract

In this paper, we report an ab-initio calculations of the structural, electronic and elastic properties of monoclinic CsGaQ2 (Q = S, Se) crystals in two polymorphs CsGaQ2-mC64 and CsGaQ2-mC16 (Q = S, Se). The investigation is done using the pseudo-potential plane-wave (PP-PW) method combined to the generalized gradient approximation (GGA) within the density functional theory (DFT). The calculated equilibrium lattice constants (a, b and c), angle β are in good agreement with the available experimental data. We have calculated and analyzed the energy gap, band structure and density of states. The electronic structure calculation demonstrates that crystals are direct-gap semiconductors. The single-crystal elastic constants Cij of CsGaQ2-mC16 are predicted, for the first time, using the stress–strain method. The polycrystalline bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio ν, and elastic anisotropy AU are determined based on the predicted Cij. Our results indicate that CsGaQ2 (Q = S, Se) can be classified as brittle materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.