Abstract

A theoretical investigation was probed to shed light on the correlation between low detection limit (LOD) in AdSV technique and metal trace complexes stability energy. The study was conducted by means of DFT calculations of copper traces complexation by using three different organic molecules as chelating agents, such as: morin, red pyrogallol and thymolphtalexone. The quantum chemistry calculations were carried out at the B3LYP/6-31G(d) level implemented in Gaussian 09 program package. The results of the electrophilicity index ω indicate that all the studied molecules have a tendency to exchange electron with copper. The negative values of free energy G and enthalpy H show that the complexation reactions are spontaneous in nature and exothermic. According to DFT calculations, copper-red pyrogallol complex with better detection limit (0.07 ng•mL-1) has the lowest total energy (-5100.213 a.u.). Thus, there is a very strong relationship between the total energy of the three complexes and their detection limits in AdSV technique. Hence, the more stable complex has the better detection limit value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call