Abstract

Ag2FeSiS4, Li2FeSnS4, and Li2FeGeS4 have been studied by first-principles calculations within density functional theory (DFT) added to the Coulomb energy (U Hubbard term) to treat the strong correlation of Fe 3d electrons. All three materials have shown that their conduction band minimum (CBM) and valence band maximum (VBM) were situated at Γ point, indicating a direct band gap of 1.99 and 2.26 eV, 2.24 eV for Ag2FeSiS4, Li2FeSnS4, and Li2FeGeS4 respectively. The lower part of the valence band was dominated by S-s orbitals while the mid part were contributed mostly by Sn/Ge-s and Ag-d states. Hence, the VBM and CBM were mainly due to Fe-d states. The bonding characterization have shown a strong covalent bonding between the Fe-S, Ge-S, Sn-S, Ag-S and Si-S atoms. The imaginary part of the dielectric constant have revealed that the first optical critical point energy occurred at 1.2 eV for Ag2FeSiS4, and at 2.0 eV for Li2FeSnS4, and Li2FeGeS4 compounds leading them to absorb less of visible spectrum. The existence of iron in the composition of these compounds have induced magnetic properties that we explored by the calculation of the magnetic moment and spin-densities maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.