Abstract

In the present work, DFT calculations are employed to obtain the optimized structures of 4- acyl pyrazolone tautomers (19 tautomers) using B3LYP/6-311++G** calculations. In addition, molecular parameters, IR frequencies and relative energies are extracted for all tautomers. The existence of aromatic ring, keto tautomer (versus enol tautomer), N-H bond (versus C-H bond) and C=N double bond (versus N=N double bond) are stabilizing factors in relative stabilities of tautomers. Calculation of vibrational frequencies showed that, in accordance with reported values, intramolecular hydrogen bond (existed in some tautomers) decreased the value of OH frequency. The solvent effects on relative stabilities of tautomers are calculated. The relative stabilities of all the tautomers in acetone, tetrahydrofurane and chloroform (in all solvents, except water) were relatively the same as those in the gas phase. In addition, a nearly good relationship is found between dipole moments of tautomers and their 7Gsolv in chloroform. This relation shows that by increasing the dipole moment, the absolute amount of 7Gsolv in chloroform increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call