Abstract

DFT calculations using the GGA-PBE exchange correlation functional were used to investigate the effect of the hydrogen in the assisted CO dissociation on the Fe(100) surface. The formation mechanisms of the primary products CH, OH, CH2, and H2O involved in the Fischer–Tropsch synthesis have been studied. Three different routes were investigated passing through the HCO, COH, or HCOH intermediates. The energy barriers of the reactions were estimated using the nudged elastic band method (NEB). The energy profiles of assisted and double-assisted dissociations of CO are presented. The formation energies of HCO, COH, and HCOH intermediates are estimated to be endothermic with activation energies of 0.90, 1.07, and 2.13 eV, respectively. The formation of CH2 is energetically more favorable with the global reaction energy estimated to be −1.10 eV. The other CH, OH, and H2O intermediates have also endothermic formation energies with respect to the Fe(100)/(CO + H) system. The chemical bonding of the adsorbed inter...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call