Abstract
Based on molecular structural design of boron-dipyrromethene (BODIPY), nine BODIPY derivatives decorated with vinyl, phenyl, dimethylamino, nitro and aldehyde group substituents, respectively, have been systematically investigated by the density function theory (DFT) method. The purposes of this paper are to study the effect of various substituents and their positions on geometric structures, electronic structures and second-order nonlinear optical (NLO) properties. In addition, the effects of polarizable environment and electric fields on the first hyperpolarizabilities (βtot) values have been investigated. It is found that the incorporation of strong electron-donating dimethylamino could induce a significant enhancement of the βtot values, and the βtot values of the bilateral α-position substitution are much larger with respect to the unilateral α-position substitution, because those substituents are able to expend the BODIPYs’ delocalized π-electron system to different extents. Time-dependent DFT results suggest that the increasement of the βtot values is related to the intramolecular charge transfer from substituents to BODIPY core. Thus, forming a D-π-A model is favorable for increasing the βtot values, where BODIPY was used as electron accepting. Hence, we hope this work will be beneficial to further investigating versatile and novel NLO materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.