Abstract

In this work, to determine natural bond orbital (NBO) analysis, solvation and substituent effects for electron-releasing substituents (CH3, OH) and electron-withdrawing derivatives (Cl, NO2, CF3) in para positions on the molecular structure of the synthesized 3-phenylbenzo[d]thiazole-2(3H)-imine derivatives 1?6 (H (1), CH3 (2), Cl (3), OH (4), CF3 (5), NO2 (6)) in the selected solvents (acetone, toluene, and ethanol) and gas-phase employing polarizable continuum method (PCM) model were studied at the M06-2x/6- -311++G(d,p) level of theory. The relative stability of the studied compounds was affected by the possibility of intramolecular interactions between substituents and the electron donor/acceptor centers of the thiazole ring. Furthermore, atomic charges electron density, chemical thermodynamics, energetic properties, dipole moments, and the nucleus-independent chemical shifts (NICS) of the studied compounds and their relative stability are considered. The dipole moment values and the HOMO?LUMO energy gap reveal the different charge transfer possibilities within the considered molecules. Frontier molecular orbital (FMO) analysis revealed that compound 6 has very small HOMO-LUMO energy gaps in the considered phases, and thus is kinetically less stable. The obtained HOMO-LUMO energy gap corresponds to intramolecular hyperconjugative interactions ?? ?*. Finally, NBO analysis is carried out to demonstrate the charge transfer between localized bonds and lone pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.