Abstract

Thermal and oxidative degradation of monoethanolamine (MEA) represents a major problem for modern day carbon capture technologies. Here, we report on a series of density functional theory (DFT) calculations investigating the possible chemical pathways leading to the formation of the most commonly observed degradation products. 2-Oxyzolidinone (OZD) can be formed from ring closure reactions of carbamates, carbamic acids, or isocyanates. The latter, itself, formed by dehydration of MEA. N-(2-hydroxethyl)ethylenediamine (HEEDA), 1-(2-hydroxyethyl)imidazolidone (HEIA), and N-(2-aminoethyl)-N′-(2-hydroxyethyl)imidazolidin-2-one (AHEIA) are all hypothesized to form favorably from degradation reactions of OZD. MEA can undergo oxidative degradation to form imines and hydroperoxides. This work details the mechanistic steps leading to the formation of these species that could help in the location of new compounds that aim to prevent their formation in future systems. Moreover, the thermochemical data will aid in the construction of a chemical kinetic mechanism to rationalize the rate of formation of all the species in real systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.