Abstract

AbstractThe mechanisms for the reaction of CH3S with NO2 are investigated at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) on both single and triple potential energy surfaces (PESs). The geometries, vibrational frequencies, and zero‐point energy (ZPE) correction of all stationary points involved in the title reaction are calculated at the B3LYP/6‐311++G(d,p) level. More accurate energies are obtained at the QCISD(T)/6‐311++G(d,p). The results show that 5 intermediates and 14 transition states are found. The reaction is more predominant on the single PES, while it is negligible on the triple PES. Without any barrier height for the whole process, the main channel of the reaction is to form CH3SONO and then dissociate to CH3SO+NO. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call