Abstract

DFT (B3LYP/6-311++G**, B3PW91/6-311++G**) Gibbs free energy and single point CCSD(T)/6-311++G**//DFT total energy calculations were performed to investigate stability and tautomerism of C5-substituted 1,2,4-triazoles. Three different tautomers are possible for the substituted 1,2,4-triazoles: N1–H, N2–H, and N4–H. Unlike for the 1,2,3-triazoles, where the most stable is the N2–H tautomer regardless of substituent applied, for the 1,2,4-triazoles, the electron donating substituents (–OH, –F, –CN, –NH 2, and –Cl) and the C5-cation stablize the N2–H tautomer, whereas the electron withdrawing substituents (–CONH 2, –COOH, –CHO, –BH 2, and –CFO) and the C5-anion stablize the N1–H tautomer. Except for the C5-anion and C5-cation, the N4–H form is the least stable tautomer. The relative stability of the C5-substituted 1,2,4-triazole tautomers is strongly influenced by attractive and/or repulsive intramolecular interactions between substituent and electron donor or electron acceptor centres of the triazole ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.