Abstract
ABSTRACT Fourier transform infrared spectra, for 2-((2-aminopyridin-3-yl) methylene) hydrazinecarbothioamide (APHT) and 2((2-aminopyridin-3-yl) methylene)-N-methylhydrazinecarbothioamide (APMHT), were recorded in the spectral range 4000–400 cm−1. Their Raman counterparts were measured in the spectral region 4000–50 cm−1. Preliminary values of dihedral angles around five rotating bonds C–NH2 pyridyl C–CN, N–N, N–CS and C–NH2 aliphatic in APHT, required for initiating geometry optimization, were obtained by pairing successive bonds and evaluating torsional potential energy for various values of dihedral angle around these bonds in the entire conformational space spanning 0° to 360°. Barrier heights, around five rotating bonds in APHT and six rotating bonds in APMHT were computed, making torsional scans in conformational space from 0° to 360°. This indicated existence of two rotational isomers for APMHT. General valence force field, harmonic vibrational fundamentals, potential energy distribution (PED), along with infrared and Raman intensities were determined using DFT/B3LYP/6-311++G(d,p) level of theory for both the molecules. Good agreement was found between measured and simulated spectra, for APHT and APMHT. This was also true for corresponding Raman spectra. The rms error between experimental and theoretical vibrational frequencies was 9.00 and 6.70 cm−1, for APHT and APMHT, respectively. All vibrational fundamentals were assigned unambiguously, on the basis of computed PED, eigenvectors, and literature range for the first time. These assignments were further supported by comparing with attribution of corresponding bonds in the parent molecule pyridine and a related molecule 2-((2-aminopyridin-3-yl)methylene)-N-ethylhydrazinecarbothioamide, wherever possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.