Abstract

The mechanistic landscape of H2 generation from formic acid catalyzed by Cp*M(III) complexes (M = Co or Rh or Ir) with diamino-/dialkylamino-substituted 2,2'-bipyridine ligand architectures have been unveiled computationally. The calculations indicate that the β-hydride elimination process is the rate-determining step for all the investigated catalysts. The dialkylamino moieties on the 2,2'-bipyridine ligand were found to reduce the activation free energy required for the rate-limiting β-hydride elimination step and increase the hydridic nature of the Ir-hydride bond, which accounts for the experimentally observed enhanced catalytic activity. Furthermore, the protonation by H3O+ ion was found to be the kinetically most favorable route than the conventional protonation by formic acid. The origin for this preference lies in the increased electrophilicity of the proton from hydronium ion which facilitates easy protonation of the metal-hydride with low activation energy barrier. The Co and Rh analogues of the chosen iridium catalyst were computationally designed and were estimated to possess a rate-determining activation barrier of 16.9 and 14.5 kcal/mol, respectively. This illustrates that these catalysts are potential candidates for FAD. The insights derived in this work might serve as a vital knowledge that could be capitalized upon for designing cost-effective catalyst for FAD in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call