Abstract

Existence of several multitopic N-heterocyclic carbene (NHC) ligands with up to four carbene centers have been predicted on the basis of Clar's aromatic sextet theory. Assessment on stability and reactivity of NHCs was made by quantifying aromaticity, aromatic stabilization energy (E(aroma)), strength of carbene lone pair, proton affinity, and CuCl binding energy. On NICS(0) and HOMA scales of aromaticity, several NHCs showed high aromaticity, while E(aroma) (17.2-19.4 kcal/mol) indicated substantial stability for the N-heterocycle. Homodesmotic reactions suggested that heat of formation of most of the newly designed carbenes is very close to that of the existing bis-NHCs. Designing a multitopic ligand through branching via C(sp3) linkage was very effective as it improved the stability of the carbene. Electrostatic potential minimum (V(min)) at the carbene lone pair suggested that annelation of heterocycle to a benzenoid ring or branching through C(sp3) linkage can only marginally influence the electron donating power of the ligand. Hence, all multitopic NHCs showed proton affinity (252.3-267.4 kcal/mol) and CuCl binding energy (62.9-66.6 kcal/mol) very close to those of 1,3-dimethylimidazolidine-2-ylidene (1). It has also been demonstrated that branched multitopic 3-dimensional NHCs are attractive for designing metal-organic framework with narrow (1-1.5 nm) cage/pore size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call