Abstract

The thermodynamic features and mechanism of the electrocatalytic oxygen reduction reaction were studied using the revPBE0-D3(BJ)/Def2-TZVP method on the example of (6,6)-armchair carbon nanotube doped with a tricoordinated silicon atom and nitrogen atoms of pyridinic and graphitic nature. Irreversible oxidation of the silicon center as a result of the formation of stable oxygen-containing adsorbates was shown. It was found that Si-poisoned structures are capable of participating in the catalysis of the target reaction along two- and four-electron routes at high overpotentials. For a nanotube doped simultaneously with pyridinic and graphitic nitrogens the potential possibility of eliminating the silicon atom from the catalyst composition in the form of orthosilicic acid and the participation of a silicon-free nitrogen-doped framework in the oxygen electroreduction reaction, for which the stage of tautomerization of pyridin-2(1H)-one to pyridin-2-ol is the limiting step was shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.