Abstract

A DFT mechanistic study has been performed to understand the [Zr]C4H8 (Zr = ZrCp2)-mediated transformations of ω-ene-cyclopropane (ω-ene-CP) and alkylidenecyclopropane (ACP) to acyclic compounds. The transformations proceed via allylic C–H bond activation, hydride transfer, C–C bond cleavage of the three-membered ring, and additions of electrophiles. The energetic results indicate that, among the possible pathways, the one leading to the experimental products is most energetically favorable, rationalizing the selectivity of the reactions. The Zr-walk takes place via allylic C–H bond activation followed by hydride transfer, completing a 1,3-hydrogen transfer. In comparison, the Pd-walk involved in the Pd-catalyzed Heck-type relay coupling reactions proceeds via migratory insertion followed by β-H elimination, resulting in a 1,2-hydrogen transfer. The difference is due to the fact that the [Zr] active species does not have a Zr–H or Zr–C bond for C═C bond migratory insertion, while the Pd–H or Pd–C bond in ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.