Abstract

Density functional theory (DFT) has provided a detailed mechanistic picture for the redox neutral nickel(II)-catalyzed arylative cyclization reactions of a tethered allene-ketone with arylboronic acids. A mechanistic rationale for the high diastereo- and enantioselectivity achieved experimentally at high reaction temperature was uncovered through modeling the reaction with a chiral ligand and the predicted stereochemical outcome corroborates with experimental results. An unprecedented pathway for the base-free organoboron transmetalation pathway was revealed and the regioselectivity of migratory insertion of tethered allene-ketones as well as the stability of the possible allylnickel isomers (σ-allyl vsp-allyl) were clarified. The multifaceted nature of the reaction is revealed with certain elementary steps preferring cationic compared to the neutral state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.