Abstract

Thermodynamic properties ( Δ H R ° , Δ G R ° ) of the radicals originating from the reactions of the compounds modeling building blocks of the polymer membranes used in low temperature fuel cell applications with hydroxyl radicals and oxygen molecules are studied in water environment and room temperature. All characteristics of the compounds are calculated using the UB3LYP DFT method with spin unrestricted orbitals. The Polarizable Continuum Model (PCM) is employed to model the solvation of species by water. A degradation mechanism for the nonfluorinated aromatic polymers sPEEK and PSU, which leads to the loss of sulfonic acid groups, is proposed. The process starts with the addition of the OH radical to aromatic rings. At the next step, an oxygen molecule is attached to the cyclohexadienyl radical forming various OH–aromatic–OO type radicals. These species can act as direct precursors for the loss of sulfonic acid group. Alternatively, they can transform into bicyclic and/or epoxy-type radicals, which are labile towards the detachment of the sulfonic acid group. The presence of water favors the detachment reactions significantly. The processes lead to decreased proton conductivity and contribute to the reduction of the membrane performance in PEMFCs and DMFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.