Abstract
In recent years, the demand for electronic materials has significantly increased, driven by industrial needs and the pursuit of cost-efficient alternatives. This comprehensive study investigates the effects of Mn substitution on LaFeO3 through the implementation of the GGA approach in density functional theory. The research findings demonstrate remarkable consistency with the experimental outcomes reported in the existing literature pertaining to the studied compounds. However, this study unveils novel insights into the mechanical and optical characteristics of the doped structures, which have not been previously reported. The structural stability is rigorously examined through multiple stability criteria, encompassing structural optimization, tests of elastic stability, and enthalpy of formation calculations. Furthermore, the electronic and optical properties of the compounds exhibit exceptional improvements in conductivity and reflectivity as a result of the doping process. The band structure analysis reveals the presence of a Moss-Burstein shift. Investigation of the magnetic properties indicates an increase in the magnetic moment value due to the Fe-Mn degeneracy resulting from increased Mn content. Mechanical analysis of the elastic moduli B, G, and Y demonstrates an enhanced strength and metal-like conductivity, attributed to the induced anharmonicity. Moreover, the internal strain factor suggests a higher degree of bond flexibility, implying potential applications of these compounds in flexible electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.