Abstract

Previously, we introduced DFT-D3(BJ)ωB97X-V and ωB97M-V functionals and assessed them for the GMTKN55 database [Najibi and Goerigk, J Chem. Theory Comput. 2018, 14, 5725]. In this study, we present DFT-D4 damping parameters to build the DFT-D4 counterparts of these functionals and assess these in comparison. We extend our analysis beyond GMTKN55 and especially turn our attention to enzymatically catalyzed and metal-organic reactions. We find that B97M-D4 is now the second-best performing meta-generalized-gradient approximation functional for the GMTKN55 database and it can provide noticeably better organometallic reaction energies compared to B97M-D3(BJ). Moreover, the aforementioned DFT-D3(BJ)-based functionals have not been thoroughly assessed for geometries and herein we close this gap by analyzing geometries of noncovalently bound dimers and trimers, peptide conformers, water hexamers and transition-metal complexes. We find that several of the B97(M)-based methods-particularly the DFT-D4 versions-surpass the accuracy of previously studied methods for peptide conformer, water hexamer, and transition-metal complex geometries, making them safe-to-use, cost-efficient alternatives to the original methods. The DFT-D4 variants can be easily used with ORCA4.1 and above.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call