Abstract

We present a theoretical study in the framework of density functional calculations, taking into account the van der Waals interactions (DFT-D) of isolated Cu-5,10,15,20-tetrakis(3,5-di-tert-butyl-phenyl) porphyrin (Cu-TBPP) molecules in a C2v conformation adsorbed on a Si(111)√3x√3R30°-boron surface [denoted Si(111)-B]. With this approach, we investigate interactions between perfect or boron-defect Si(111)-B substrates and the Cu-TBPP molecule as well as the consequences of demetallation of Cu-TBPP. For each model, we determine the structural equilibrium, the spatial charge-density distribution and the electronic properties of the ground state. We conclude that there is potential for Si adatom capture by a porphyrin without strong modification of the porphyrin response, as seen from simulated scanning tunneling microscopy (STM) images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.