Abstract

Here we report on the results of our theoretical study of hydrogen localization and motion in disordered bcc Ti-V-Cr alloys. The calculations have been carried out within a DFT supercell approach for a certain composition, namely Ti0.33V0.27Cr0.4 for H/M = 1/32. It was found that hydrogen is localized in highly distorted tetrahedral sites formed by different metal species. H atoms are displaced towards titanium. The estimation of the hydrogen diffusion parameters provides the activation energy value of 0.126 eV and the diffusion coefficient at 294 K equal to 1.9 10-10 m/s2 that is in good agreement with available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.