Abstract

Abstract Two cis-dioxovanadium(V) complexes and three monooxovanadium(V) complexes with different coordination numbers and ligand spheres, serving as model complexes for vanadium haloperoxidases, were studied by 51V solid-state NMR spectroscopy. The most important 51V solid-state NMR parameters (quadrupolar coupling constant C Q , asymmetry of the EFG tensor η Q , isotropic chemical shift δ iso , chemical shift anisotropy δ σ , asymmetry of the CSA tensor η σ and the Euler angles α, β and γ) describing the quadrupolar and chemical shift anisotropy interactions were determined theoretically with DFT methods employing the B3LYP functional and experimentally using genetic fitting algorithms. Calculations of δ iso values were treated with different referencing values of VOCl3 computed with different-sized basis sets using the “counterpoise method”. The calculated C Q values were discussed in terms of the quadrupolar moment Q. Absolute tensor orientations of CSA and EFG tensors were computed by DFT. These orientations were found to correlate to structural features of the model complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.