Abstract

One-bond heteronuclear spin-spin coupling constants (1)J(PX) (X=H, O, S, Se, C and N) between the phosphorus atom and axial and equatorial substituents in dioxaphosphorinanes are computed using density functional theory (DFT). The experimental values of these coupling constants for a variety of substituents can be applied to identify different diastereoisomers. The DFT calculations confirm the systematic trend observed in experiment, and indicate that the computed (1)J(PX) coupling constants are related to the length of the axial and equatorial bonds. A similar relation between the phosphorus chemical shift and the R(PX) bond length appears to be valid, with the exception of selenium substituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.