Abstract

DFT calculations of electric field gradient (EFG) tensors at the sites of 14N, 17O, and 2H nuclei are carried out to characterize the hydrogen bond (HB) interactions in the sulfapyridine crystal structure. One-molecule (monomer) and hydrogen-bonded hexameric cluster models of sulfapyridine are constructed according to available X-ray coordinates where the proton positions are optimized. Then, EFG tensors are calculated for both monomer and target molecule in the hexameric cluster of sulfapyridine to show the effect of HB interactions on the tensors. The calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters: quadrupole coupling constant (CQ) and asymmetry parameter (ηQ). The results reveal different contribution of various nuclei to N-H⋯N and N-H⋯O HB interactions in the cluster where the N2 and O1 have major contributions. The computations are performed with B3LYP and B3PW91 functionals DFT method and 6-311+G* and 6-311++G** standard basis sets using the Gaussian 98 package.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.