Abstract

The vertical core– and valence–shell electron excitation and ionization energies of the three title molecules, 1–3, were calculated by density functional theory (DFT) using adequate functional for each type of processes and atoms under study. The inner shells treated were C1s, N1s, S1s, S2s, S2p. Molecular geometry was optimized by DFT B3LYP/6-311+(d,p). The basis set of triple zeta plus polarization (TZP) Slater-type orbitals was employed for DFT calculations. The ΔSCF method was used to calculate ionization energies. The average absolute deviation (AAD) from experiment of 26 valence-electron ionization energies calculated by DFT for the three molecules 1–3 was 0.14eV; while that of 24 calculated core-electron binding energies (CEBEs) from experiment was 0.4eV. Selected core excitation energies were calculated by the multiplet approximation for the three molecules. The AAD of twelve calculated core excitation energies by the multiplet approximation that exclude S2s cases was 0.56eV. Time-dependent DFT (TDDFT) was employed to calculate the excitation energies and corresponding oscillator strengths of core- and valence-electrons of the molecules. Some selected occupied core orbitals were used to calculate the core-excitation energies with the TDDFT (Sterner–Frozoni–Simone scheme). The core excitation energies thus calculated were in an average error of ca. 28eV compared to observed values. They were shifted to the value calculated by the multiplet approximation. Convoluted spectra based upon the shifted energies and accompanying oscillator strengths reproduce low-energy region of observed spectra reasonably well, whereas they deviate from experiment in high-energy region. Reasonable agreement between theory and experiment was obtained for the valence electron excitations of the molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call