Abstract

We investigate discrete Fourier transform-based offset quadrature amplitude modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) technology. We derive a closed-form expression for the de-multiplexed signal and analyze the influence of crosstalk on implementation algorithms and system performance. It is found that channel estimation in offset-QAM OFDM is different from that in conventional OFDM (C-OFDM) due to the residual crosstalk terms and requires particular study. We propose simple and efficient channel estimation algorithms and show, in a 38-Gbit/s offset-16QAM OFDM experiment with 840-km single-mode fiber, that these algorithms can enable the system performance close to the theoretical limit. By using these algorithms, we compare this technology with C-OFDM and Nyquist FDM (N-FDM) and numerically and experimentally show that DFT-based offset-QAM OFDM can greatly enhance the net data rate for fiber transmissions compared to C-OFDM and exhibit lower complexity than N-FDM. These advantages together with the successfully developed implementation algorithms make this technology very promising for optical communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.