Abstract
Bifunctional catalysts containing discrete metal pi-acid and amine sites were designed and investigated for the direct intermolecular addition of aldehydes and ketones to unactivated alkynes. Copper(I)-based catalysts were prioritized based on intramolecular (Conia-ene type) reactions, and complexes were designed with tridentate ligands and potentially hemilabile heterocyclic spacers. The structures of the designed catalysts were computed using density functional theory (DFT), and the relative energies of putative catalytic intermediates were estimated and used to prioritize catalyst designs. Novel bifunctional precatalysts containing a thiazole spacer were synthesized via a 9-step sequence and combined with transition metals before screening for the direct addition of aldehydes and ketones to several internal and terminal alkynes. Despite the lack of desired intermolecular reactions, DFT calculations of putative catalyst intermediates appears to be a promising strategy for the design and prioritization of bifunctional catalysts for CC bond formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.