Abstract

Three-dimensional (3D) die stacking is an emerging integration technology which brings benefits with respect to heterogeneous integration, inter-die interconnect density, performance, and energy efficiency, and component size and yield. In the past, we have described, for logic-on-logic die stacks, a 3D DfT (Design-for-Test) architecture and corresponding automation, based on die-level wrappers. Memory-on-logic stacks are among the first 3D products that will come to the market. Recently, JEDEC has released a standard for stackable Wide-I/O Mobile DRAMs (Dynamic Random Access Memories) which specifies the logic-memory interface. The standard includes boundary scan features in the DRAM memories. In this paper, we leverage and extend the 3D DfT wrapper for logic dies, such that, in conjunction with the boundary scan features in the Wide-I/O DRAM(s) stacked on top of it, testing the logic-memory interconnects is enabled. A dedicated Interconnect ATPG (Automatic Test Pattern Generation) algorithm is used to deliver effective and efficient dedicated test patterns. We have verified our proposed DfT extension on an industrial design and shown that the silicon area cost of the extended wrapper with JEDEC Wide-I/O interconnect test support is negligible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.