Abstract

A number of diazenedicarboxylates have been studied by multinuclear magnetic resonance ((17)O, (15)N, (13)C) and compared with analogous fumaric, maleic, and phthalic diesters; the investigation of selected compounds of these classes was complemented by density functional theory (DFT) calculations using a polarizable continuum model (PCM) for the solvent, employing the PBE0 functional together with the 6-311G(d,p) basis set for geometry optimization, and the 6-311 + G(2d,p) basis set for calculating the NMR shielding using the gauge-including atomic orbital (GIAO) method. This combined approach provided important information about the preferred conformations in chloroform and their influence on the NMR parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.