Abstract

In this work a detailed quantum-chemical comparison of the relative stability of six tautomers of 1,2,5-oxadiazol-4,3-diamine studied in the gas phase and solution. Theoretical calculations are carried out by the density functional theory (DFT/B3LYP) and MP2 methods using the standard 311++G(d,p) basis set. The results indicate that A is the most stable form in the gas phase and also is the predominant tautomer in solution at the DFT and MP2 methods. The transition states of proton transfer reaction are calculated. The variation of dipole moments and charges on atoms are studied in various solvent. Specific solvent effects with addition of one water molecule near the electrophilic centers of tautomer investigated. Also the transition state of proton transfer assisted by a water molecule was investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.