Abstract
We have studied the electronic and optical properties of three low-symmetry graphene quantum dots (GQDs), with point-group symmetries C2v and C2h. For the calculations of linear optical absorption spectra, we employed both first-principles time-dependent density-functional theory (TDDFT) and the electron-correlated Pariser-Parr-Pople (PPP) model coupled with the configuration-interaction (CI) approach. In the PPP-CI approach, calculations were performed using both screened and standard parameters, along with efficiently incorporating electron correlation effects using multireference singles-doubles CI for both ground and excited states. We assume that the GQDs are saturated by hydrogen atoms at the edges, making them effectively polycyclic aromatic hydrocarbons (PAHs) dibenzo[bc,ef]coronene (also known as benzo(1,14)bisanthene, C30H14) and two isomeric compounds, dinaphtho[8,1,2abc;2',1',8'klm]coronene and dinaphtho[8,1,2abc;2',1',8'jkl]coronene with the chemical formula C36H16. The two isomers have different point group symmetries; therefore, this study will also help us understand the influence of symmetry on the optical properties. A common feature of the absorption spectra of the three GQDs is that the first peak representing the optical gap is of low to moderate intensity, while the intense peaks appear at higher energies. For each GQD, PPP model calculations performed with the screened parameters agree well with the experimental results of the corresponding PAH and also with the TDDFT calculations. To further quantify the influence of electron-correlation effects, we also computed the singlet-triplet gap (spin gap) of the three GQDs, and we found them to be significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.