Abstract
A DFT study of methanol production via CO2 hydrogenation reactions on clean Ni(111) and Ni(111)-M (M = Cu, Pd, Pt, or Rh) surfaces has been performed. The reaction network of this synthesis reaction has been determined using energy profiles. The competing reaction network between the formate-mediated route and the carboxyl-mediated route is also presented. Both routes are equally possible in mediating the overall synthesis reactions. A simple selectivity analysis based on the energy barrier shows that methanol synthesis is more preferred rather than formic acid (HCOOH) or carbon monoxide (CO) production. A mean-field kinetic analysis is also employed to determine the kinetic performance of all catalytic surfaces. The formate-mediated route is found to be energetically and kinetically more dominant than the carboxyl-mediated route. Cu, Pd, and Pt dopants are successful in increasing the kinetic performance of the clean Ni(111) surface in the formate route and Cu, Pt, and Rh dopants in the carboxyl route.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.