Abstract

Mechanistic pathways for the cyclization of 1,5-alkynylacetal with N2CHTMS in the presence of Cp- and Cp*RuCl(cod) to afford (Z)- and (E)-(trimethylsilyl)vinyl spiroacetals have been calculated. Calculations show the presence of three conformers in equilibrium for the initially formed ruthenium carbenes. Differences in the stabilities and reactivities of the conformers, depending on the use of a Cp or Cp* ruthenium catalyst, are responsible for the favorable active reaction pathways in each case, even though the geometry of the resulting product is the same regardless of the catalyst used. Kinetic Monte Carlo (KMC) simulations with rate coefficients, including tunneling probabilities for the hydride transfer step, were used to model the evolution of reactants, intermediates, and products for all calculated pathways. It was shown that one path is almost exclusively active for each catalyst. Finally, the energetic span model of Kozuch and Shaik was used to calculate the energetic span (δE), the TOF-determining transition state (TDTS), the TOF-determining intermediate (TDI), and the TOF value for each of the feasible mechanistic pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.