Abstract

The mechanism for the CH2SH + O2 reaction was investigated by DFT and ab initio chemistry methods. The geometries of all possible stationary points were optimized at the B3LYP/6-311+G(d,p) level, and the single point energy was calculated at the CCSD(T)/cc-pVXZ(X = D and T), G3MP2 and BMC-CCSD levels. The results indicate that the oxidation of CH2SH by O2 to form HSCH2OO is a barrierless process. The most favorable channel is the rearrangement of the initial adduct HSCH2OO (IM1) to form another intermediate H2C(S)OOH (IM3) via a five-center transition state, and then the C–O bond fission in IM3 leads to a complex CH2S. . .HO2 (MC1), which finally gives out to the major product CH2S + HO2. Due to high barriers, other products including cis- and trans-HC(O)SH + HO could be negligible. The direct abstraction channel was also determined to yield CH2S + HO2, with the barrier height of 22.3, 18.1 and 15.0 kcal/mol at G3MP2, CCSD(T)/cc-pVTZ and BMC-CCSD levels, respectively, it is not competitive with the addition channel, in which all stationary points are lower than reactant energetically. The other channels to produce cis- and trans-CHSH + HO2 are also of no importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call