Abstract

Methane over-oxidation by copper-exchanged zeolites prevents realization of high-yield catalytic conversion. However, there has been little description of the mechanism for methane over-oxidation at the copper active sites of these zeolites. Using density functional theory (DFT) computations, we reported that tricopper [Cu3 O3 ]2+ active sites can over-oxidize methane. However, the role of [Cu3 O3 ]2+ sites in methane-to-methanol conversion remains under debate. Here, we examine methane over-oxidation by dicopper [Cu2 O]2+ and [Cu2 O2 ]2+ sites using DFT in zeolite mordenite (MOR). For [Cu2 O2 ]2+ , we considered the μ-(η2 :η2 ) peroxo-, and bis(μ-oxo) motifs. These sites were considered in the eight-membered (8MR) ring of MOR. μ-(η2 :η2 ) peroxo sites are unstable relative to the bis(μ-oxo) motif with a small interconversion barrier. Unlike [Cu2 O]2+ which is active for methane C-H activation, [Cu2 O2 ]2+ has a very large methane C-H activation barrier in the 8MR. Stabilization of methanol and methyl at unreacted dicopper sites however leads to over-oxidation via sequential hydrogen atom abstraction steps. For methanol, these are initiated by abstraction of the CH3 group, followed by OH and can proceed near 200 °C. Thus, for [Cu2 O]2+ and [Cu2 O2 ]2+ species, over-oxidation is an inter-site process. We discuss the implications of these findings for methanol selectivity, especially in comparison to the intra-site process for [Cu3 O3 ]2+ sites and the role of Brønsted acid sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.