Abstract

In this paper, we present results and describe the methodology of application of DFT-1/2 method for five three-dimensional topological insulators materials that have been extensively studied in last years: Bi2Se3, Bi2Te3, Sb2Te3, CuTlSe2 and CuTlS2. There are many differences between the results of simple DFT calculations and quasiparticle energy correction methods for these materials, especially for band dispersion in the character band inversion region. The DFT-1/2 leads to quite accurate results not only for band gaps, but also for the shape and atomic character of the bands in the neighborhood of the inversion region as well as the topological invariants, essential quantities to describe the topological properties of materials. The methodology is efficient and ease to apply for the different approaches used to obtain the topological invariant Z 2, with the benefit of not increasing the computational cost in comparison with standard DFT, possibilitating its application for materials with a high number of atoms and complex systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call