Abstract

The power generation system with a doubly fed induction generator (DFIG), which can be used as an autonomous power system after the loss of mains in a distributed generation network, is described. After the mains outage, a fixed frequency and an amplitude of the output voltage are obtained, despite the variable rotor speed. For this reason, it can be successfully applied in the variable-speed wind turbines, adjustable speed water plants, or diesel engines. Moreover, the stand-alone operation of DFIG is useful in a flywheel-based high-energy rotary uninterruptible power supply system. An output voltage is controlled directly by the synchronization of an actual voltage vector with the reference vector represented in a synchronously rotating polar frame. The rotor current angular speed is obtained as a result of vectorial phase-locked loop operation. Any sensors or estimators of the rotor speed or position are unnecessary. Both amplitude and angle control loops are linear. The use of stand-alone operation in grid-connected systems requires mains outage detection. Also, the grid voltage recovery requires a method of synchronization and soft connection of a generator to the grid. The proposed methods of output voltage control, synchronization, and detection of mains loss were tested in a laboratory system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.