Abstract

Hi-C technology has been the most widely used chromosome conformation capture (3C) experiment that measures the frequency of all paired interactions in the entire genome, which is a powerful tool for studying the 3D structure of the genome. The fineness of the constructed genome structure depends on the resolution of Hi-C data. However, due to the fact that high-resolution Hi-C data require deep sequencing and thus high experimental cost, most available Hi-C data are in low-resolution. Hence, it is essential to enhance the quality of Hi-C data by developing the effective computational methods. In this work, we propose a novel method, so-called DFHiC, which generates the high-resolution Hi-C matrix from the low-resolution Hi-C matrix in the framework of the dilated convolutional neural network. The dilated convolution is able to effectively explore the global patterns in the overall Hi-C matrix by taking advantage of the information of the Hi-C matrix in a way of the longer genomic distance. Consequently, DFHiC can improve the resolution of the Hi-C matrix reliably and accurately. More importantly, the super-resolution Hi-C data enhanced by DFHiC is more in line with the real high-resolution Hi-C data than those done by the other existing methods, in terms of both chromatin significant interactions and identifying topologically associating domains. https://github.com/BinWangCSU/DFHiC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.