Abstract

We report on a laser system based on difference frequency generation (DFG) to produce tunable, narrow-linewidth (<30pm), and comparatively high-energy mid-IR radiation in the 6.8 µm region. The system exploits a lithium thioindate (LiInS2) nonlinear crystal and nanosecond pulses generated by single-frequency Nd:YAG and Cr:forsterite lasers at 1064 and 1262 nm, respectively. Two experimental configurations are used: in the first one, single-pass, the mid-IR energy achieved is 205 µJ. Additional increments, up to 540 µJ, are obtained by performing double-pass through the nonlinear crystal. This laser has been developed for high-resolution photon-hungry spectroscopy in the mid-IR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.